11 research outputs found

    BrainWAVE: A flexible method for noninvasive stimulation of brain rhythms across species

    Get PDF
    Rhythmic neural activity, which coordinates brain regions and neurons to achieve multiple brain functions, is impaired in many diseases. Despite the therapeutic potential of driving brain rhythms, methods to noninvasively target deep brain regions are limited. Accordingly, we recently introduced a noninvasive stimulation approach using flickering lights and sounds ( flicker ). Flicker drives rhythmic activity in deep and superficial brain regions. Gamma flicker spurs immune function, clears pathogens, and rescues memory performance in mice with amyloid pathology. Here, we present substantial improvements to this approach that is flexible, user-friendly, and generalizable across multiple experimental settings and species. We present novel open-source methods for flicker stimulation across rodents and humans. We demonstrate rapid, cross-species induction of rhythmic activity without behavioral confounds in multiple settings from electrophysiology to neuroimaging. This flicker approach provides an exceptional opportunity to discover the therapeutic effects of brain rhythms across scales and species

    Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus

    No full text
    International audienceReconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements , and protein divergence into a single evolutionary framework

    Association of hsp90 to the hTERT promoter is necessary for hTERT expression in human oral cancer cells

    No full text
    Enhanced expression of human telomerase reverse transcriptase (hTERT) occurs frequently during cellular immortalization. The current study was undertaken to determine the mechanism regulating the hTERT promoter activity during cellular immortalization of human oral keratinocytes. Normal human oral keratinocytes (NHOKs) were immortalized with Bmi-1 and the E6 oncoprotein of human papillomavirus type 16 to establish the telomerase-positive HOK-Bmi-1/E6 cell line. Using DNA–protein-binding assay, we found that heat shock protein 90 (hsp90) physically interacts with the hTERT promoter in vitro. The hsp90 interaction with the promoter was detected more strongly in the telomerase-positive HOK-Bmi-1/E6 cells compared with that in senescing NHOK. Chromatin immunoprecipitation confirmed the in vivo interaction between hsp90 and the hTERT promoter in SCC4 cells, a telomerase-positive oral cancer cell line, but not in the NHOK. To determine the physiological significance of this interaction, SCC4 cells were exposed to geldanamycin (GA), a competitive inhibitor of hsp90. GA exposure led to decrease in telomerase activity, hTERT promoter activity and hTERT messenger RNA expression in SCC4 cells, even in the absence of de novo protein synthesis. Also, it abolished the in vivo interaction of the hTERT promoter region with hsp90 but not with Sp1 or c-Myc. These results indicate that physical interaction between hsp90 and the hTERT promoter occurs in telomerase-positive cells but not in normal human cells and is necessary for the enhanced hTERT expression and telomerase activity in cancer cells

    RNF4 is required for DNA double-strand break repair in vivo

    No full text
    <p>Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signaling and repair proteins to the sites of DNA lesions. Coordinated protein SUMOylation and ubiquitylation have crucial roles in regulating the dynamic assembly of protein complexes at these sites. However, how SUMOylation influences protein ubiquitylation at DSBs is poorly understood. We show herein that Rnf4, an E3 ubiquitin ligase that targets SUMO-modified proteins, accumulates in DSB repair foci and is required for both homologous recombination (HR) and non-homologous end joining repair. To establish a link between Rnf4 and the DNA damage response (DDR) in vivo, we generated an Rnf4 allelic series in mice. We show that Rnf4-deficiency causes persistent ionizing radiation-induced DNA damage and signaling, and that Rnf4-deficient cells and mice exhibit increased sensitivity to genotoxic stress. Mechanistically, we show that Rnf4 targets SUMOylated MDC1 and SUMOylated BRCA1, and is required for the loading of Rad51, an enzyme required for HR repair, onto sites of DNA damage. Similarly to inactivating mutations in other key regulators of HR repair, Rnf4 deficiency leads to age-dependent impairment in spermatogenesis. These findings identify Rnf4 as a critical component of the DDR in vivo and support the possibility that Rnf4 controls protein localization at DNA damage sites by integrating SUMOylation and ubiquitylation events. Cell Death and Differentiation (2013) 20, 490-502; doi:10.1038/cdd.2012.145; published online 30 November 2012</p>
    corecore